
2/19/2014

Pointers vs. References

Moritz Petry

Page22/19/2014 |

Moritz Petry

MBI

Basics

Pointer & reference hold the address of the object.

Page32/19/2014 |

Moritz Petry

MBI

Basic differences

Pointer
Does not have to be initialized:

int i = 0;

int * pi; // Okay. But risky.

pi = &i;

Uses pointer arithmetic:

pi++; // Increment pointer.

Can point to NULL:

int * pi = 0;

Reference
Has to be initialized:

int i = 0;

int & ri; // Error, reference has to
be initialized.

int &ri = i;

Same arithmetic as referred object:

ri++; // Increment i.

One chance to refere to NULL:

int * pi = 0;

int & ri = *pi;

Cannot refer to NULL!

Page42/19/2014 |

Moritz Petry

MBI

Benefits of references

Pointer
Need to be dereferenced:

*pi = 5;

Longer syntax:

vector<int> v(10);

vector<int>* pv = &v;

pv->size();

Check whether pointer is NULL:

void printP (const int * p)

{

if (p)

cout << * p;

}

Reference
No operators needed:

ri = 5;

Same syntax as referred Object:

vector<int> v(10);

vector<int>& rv = v;

rv.size();

No need to check:

void printR (const int & r)

{

cout << r;

}

Page52/19/2014 |

Moritz Petry

MBI

Operators

Pointer
Not usual arithmetic layout:

MyVector* operator +(const MyVector & i);

MyVector* operator =(const MyVector & i);

(*v4) = (*v1) + (*v2) + (*v3);

Looks like a vector of pointers:
MyVector* operator [](const int & i);

*v[1] = 15;

Reference
Familliar arithmetic layout:

MyVector& operator +(const MyVector & i);

MyVector& operator =(const MyVector & i);

v4 = v1 + v2 + v3;

Normal vector syntax:
MyVector& operator [](const int & i);

v[1] = 15;

Page62/19/2014 |

Moritz Petry

MBI

Conclusion

• If you know you have something to refere to, use a

reference.

• If you do not want to reassign your pointer, use a reference.

• If you create your own operators, use almost every time a

reference.

• Use pointers in all other cases.

2/19/2014

Thank you for your attention!

