

Deprecation of “std::cout”

std::cout << “some console output” << std::endl;

printf(“ …… \n”);

Why?

std::cout is

- not thread-safe
- allows neither filtering nor categorizing
- may not be available on all platforms

Our logging approach in MITK:

LOG_INFO as a compatible (and more comfortable)
replacement for std::cout

LOG_INFO << “some console output”;

LOG_INFO features

LOG_INFO also automagically adds following to each log message:

- File & Line
- Level (INFO, WARN, ERROR, FATAL, DEBUG)
- Functionname
- Modulename

The Logging backend can provide thread-safety and
optionally support:

- Thread-ID
- Time

Categories
by using the () operator its possible to specify categories:

LOG_INFO(“openCherry") << “job system initialized”;

sub-categories are defined by a „.‟:

LOG_INFO(“openCherry.ui”) << “sub-categories”;

example of defining a custom macro:

#define CHERRY_INFO LOG_INFO(“openCherry”)

custom macros can use same syntax:

CHERRY_INFO(“ui”) << “syntax stays”;

you may create sub-categories (they‟ll be delimited by a „.‟):

#define CHERRYUI_INFO CHERRY_INFO(“ui”)

“signature”:

LOG_INFO << “no category”;
LOG_INFO(const char *) << “single category”;
LOG_INFO(const char *)(const char *) << “sub categories”;

4+1 Levels
void otherMethod()
{

; INFO, for standard information messages
LOG_INFO(“dataStorage") << “new data storage created”;

; WARN, to inform about problems, that may affect performance or quality
LOG_WARN(“gpgpu") << “no openGL hardware support detected, using software emulation”;

; ERROR, if its not possible to solve a problem
LOG_ERROR(“dataStorage.fileLoader") << “input data corrupt”;

; FATAL, if the application cant continue running
LOG_FATAL(“openCherry.ui”) << “cant open main qt window, EXITING”;

; DEBUG, special level, that can be enabled by a special C Preprocessor flag
LOG_DEBUG(“rendering.mapper”) << “calling mapper ” << mapper.name;

#define MBILOG_ENABLE_DEBUG

you can add that #define at (the most) top of your .cpp to temporarily enable debug
messages for that single file.

or enable it for all files through the Cmake flag „MBILOG_ENABLE_DEBUG_MESSAGES‟

if MBILOG_ENABLE_DEBUG is not defined before #include <mbilog.h>,
you can be sure that the LOG_DEBUG statement will be compiled to ZERO code,
but its still checked for correct syntax and semantics

}

Conditionals
The () Operator also supports a bool as argument

The Log message will only be sent, when all given arguments are true;

LOG_DEBUG(x > 1000) << “x is too large”;

LOG_INFO(mitk::isVerboseLogEnabled()) << “verbose message”;

you may also define a custom macros:

#define VERBOSE_INFO LOG_INFO(mitk::useVerboseLogging())

“signature” is as with categories:

LOG_INFO(bool)(bool)…

How to use

#include “mbilog.h”

in your .cpp file

but it is often already included through mitkCommon.h

