
10/24/12

Valgrind

Eric Heim

Page 210/24/12 |

Eric Heim
MBI

Valgrind - Introduction

What is Valgrind?
● A collection of tools for memory missmanagment

detection and profiling on linux and mac

What can Valgrind do for you?
● Detect memory leaks

● Detect reads/writes inappropriate areas of memory

● Profile function execution

● Profile cache hit/miss

● And many more

Page 310/24/12 |

Eric Heim
MBI

Valgrind – Memory leak detection

● Program runs several times slower

● Code need to be compiled in debug

● Output is shown on the terminal

Memcheck:

valgrind --tool=memcheck --leak-check=yes program

Page 410/24/12 |

Eric Heim
MBI

Valgrind – Leak types

Definitely lost:

➔ Memory is lost. Error need to be fixed !

Indirectly lost:

➔ Memory is indirectily lost through a pointer. When the
root of a tree is defiinetly lost, all childs are inderectly
lost.

Possibly lost:

➔ Pointer to the buffer start is lost, but another pointer
references part of the buffer

Still reachable:

➔ Memory is still reachable that could have been deleted

Page 510/24/12 |

Eric Heim
MBI

Valgrind – Memory leak detection

What memcheck can also
detect:

1. Usage of uninitialized variables

2. Missmatch of new/[]/malloc and
delete/[]/free

3. Accessviolations in heap memory

What memcheck can't
find:

4. Out of bound checks in arrays
allocated on the stack

Page 610/24/12 |

Eric Heim
MBI

Valgrind – Profiling with callgrind

 Callgrind:
● The callgrind tool records the callhistory and instructions

issued per function

● Results are stored in a file

● Caches can be simulated

● Available for different Architectures

 Usage:
valgrind --tool=callgrind --dump-instr=yes –simulate-cache=yes program

Hint: (compile program in release with debuginfo)

Page 710/24/12 |

Eric Heim
MBI

Valgrind – Profiling with callgrind

Problems:
● Program runs 4 – 20 times slower

● Everything is simulated and captured, also parts of the
program that are not interesting

Only the code of interest need to be profiled

Page 810/24/12 |

Eric Heim
MBI

Valgrind – How to profile

Macros for profiling parts of the code are provided by
callgrind.h

Disable simulation and capture via commandline arguments:

● --instr-atstart=<yes|no> [default: yes] (disable simulation)

● --collect-atstart=<yes|no> [default: yes] (disable capture)

Macros:
● Start simulation:

CALLGRIND_START_INSTRUMENTATION

● Capture data:

CALLGRIND_TOGGLE_COLLECT

● Stop simulation:

CALLGRIND_STOP_INSTRUMENTATION

Page 910/24/12 |

Eric Heim
MBI

Valgrind – How to profile

And finally we got our output:

~17.000 lines for the simple program from the previous slides !!!

Page 1010/24/12 |

Eric Heim
MBI

Valgrind – kcachegrind

Use kcachegrind to visualize and analyze the data.

Page 1110/24/12 |

Eric Heim
MBI

Valgrind

	Slide 1
	Interactive rebase
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

