
23/10/2015

Programming in the future tense,

or Accept that things will change

Michael Brehler

Medical and Biological Informatics (MBI)

Page 2 10/23/2015 |

Michael Brehler

MBI

Programming in the future tense

Object-oriented programming

 Support for incremental changes

 add new functionality and new properties

Good software:

• Adepts well to change

• Accommodates new features

• Ports to new platforms

• Adjusts to new demands

• Handles new inputs

Good software does not come about by accident,

Good software is written by Programming in the future tense!

robust

reliable

flexible

Page 3 10/23/2015 |

Michael Brehler

MBI

Why?

What could happen…

• New classes are added to the hierarchies

• New overloading will occur

• Derived classes may be tomorrow‘s base classes

• Functions are called in new context

Page 4 10/23/2015 |

Michael Brehler

MBI

Why?

What could will happen!

• New classes are added to the hierarchies

• New overloading will occur

• Derived classes may be tomorrow‘s base classes

• Functions are called in new context

Additional problem:

“It is to remember that the programmers who modify code [fix

bugs] are typically NOT the code‘s original developers!”
- Scott Meyers, More Effective C++, Addison-Wesley, 2011

Page 5 10/23/2015 |

Michael Brehler

MBI

HOW TO…

• One way to do this is to express design constraints in C++

(in addition to comments and documentation):

• A class is designed to never have derived classes

 use C++ to prevent derivation

or even better, use the final keyword of C++ 11

Page 6 10/23/2015 |

Michael Brehler

MBI

HOW TO…

• If copy and assignment make no sense for a class

 prevent those operations by declaring the copy constructor

and assignment operator private

 Prevent partial assignments

Page 7 10/23/2015 |

Michael Brehler

MBI

Chicken / Lizard example

Animal

Lizard Chicken

Animal class embodies all features

shared by all creatures

Specialize Animal in

ways appropriate for

Chickens and Lizards

Page 8 10/23/2015 |

Michael Brehler

MBI

Chicken / Lizard example

Only the Animal part

liz1 will be modified!

 Partial assignment

Page 9 10/23/2015 |

Michael Brehler

MBI

HOW TO…

• Avoid „demand-paged“ virtual functions (only make functions

virtual when somebody comes along and demands it)

 Make it virtual if it makes sense

 If it does not make sense that's ok but don‘t change it later

just because it would be convenient for someone

• Handle assignments and copy construction in every class

 Even if „nobody ever does those things“

Recognize that anything somebody CAN do, they WILL

do.

Page 10 10/23/2015 |

Michael Brehler

MBI

Examples

Most frequent (simple) MITK examples:

• Assigning objects to themselves

• Use objects before giving them values

• Give objects values and never use them

• Give objects huge, tiny or null values

 A friendly reminder:

 If it will compile, somebody will do it.

Page 11 10/23/2015 |

Michael Brehler

MBI

Summary

• Present-tense thinking is ok

• You can’t wait for the latest language features

• It has to run on the current hardware

• It has to offer acceptable performance NOW

• Provide complete classes, even if some parts aren‘t currently

used.

• Design your interfaces to facilitate common operations and

prevent common errors  Make the classes hard to use

incorrectly!

• If there is no great penalty for generalizing your code,

generalize it.

Page 12 10/23/2015 |

Michael Brehler

MBI

Be a renegade and program in future tense!

