
Undo / Redo

Ingmar Wegner



Page 206.04.2011

MITK Interaction
I. Wegner

keyboard / mouse etc.

GlobalInteraction

EventMapper XML

Data

E,a XML

SpecialInteractorOperation

Reminder: Interaction Sequence



Page 306.04.2011

MITK Interaction
I. Wegner

Class mitk::Operation is a container for all information 
important for a change of data. Example:

…within MySpecialInteractor::ExecuteAction(…)

mitk::Point3D itkPoint = theEvent->GetWorldPosition();
PointOperation* doOp = new mitk::PointOperation(

OpINSERT, timeInMS, itkPoint, pointSet->Size());

pointSet->ExecuteOperation(doOp);

Operations

What to do? When? Change to? Where?

http://docs.mitk.org/nightly-qt4/classmitk_1_1Operation.html�


Page 406.04.2011

MITK Interaction
I. Wegner



Page 506.04.2011

MITK Interaction
I. Wegner

Undo / Redo functionality!

Represents an extra layer between 
interaction classes taking care of changing data
and data.

Why Operations?

Data
SpecialInteractorOperation



Page 606.04.2011

MITK Interaction
I. Wegner

keyboard / mouse etc.

GlobalInteraction

EventMapper

UndoController

Data

E,a

SpecialInteractorOperation

Undo Sequence



Page 706.04.2011

MITK Interaction
I. Wegner

//within MySpecialInteractor::ExecuteAction(…)

mitk::Point3D itkPoint = theEvent->GetWorldPosition();
PointOperation* doOp = new mitk::PointOperation(

OpINSERT, timeInMS, itkPoint, pointSet->Size());

pointSet->ExecuteOperation(doOp);

if (m_UndoEnabled) //protected member of mitk::StateMachine
{

PointOperation *undoOp = new mitk::PointOperation(
OpREMOVE, timeInMS, itkPoint, pointSet->Size());

OperationEvent *operationEvent = 
new OperationEvent(pointSet, doOp, undoOp, "Add point");

m_UndoController->SetOperationEvent(operationEvent);
}
else

delete doOp;

//OperationEvent and Operations are kept within and deleted in UndoModel

Undo operations



Page 806.04.2011

MITK Interaction
I. Wegner

Undo:
• Offer flexible undo / redo functionality
Can be enabled and disabled. Thorough programming 
includes undo, rapid prototyping doesn’t care about undo.

• Save memory resources
Only store parameters how operations can be undone

PointOperation *undoOp = new mitk::PointOperation(
OpREMOVE, timeInMS, itkPoint, pointSet->Size());

If impossible (e.g. image filters), store backups if 
necessary

Feature Requests in the very beginning 
11/2002



Page 906.04.2011

MITK Interaction
I. Wegner

DO:
•provide Undo functionality!
•reuse constants in mitkInteractionConst.h
•divide your information into small pieces and send them 
via operations to data: 
OpADD, OpSELECT rather than OpADDSELECTED

•if image filter operation is invertible, 
then store invert parameters only
MyFilterOperation *undoOp = new mitk::MyFilterOperation(

OpDEFAULT, timeInMS, invertParameters); 

• if not, save backup of image on disk

DON’T
•store big data in operations; SmartPointers onto images in 
operations will hold memory until UndoStack is cleared

DO‘s and DONT‘s


	�Undo / Redo�
	Reminder: Interaction Sequence
	Operations
	Slide Number 4
	Why Operations?
	Undo Sequence
	Undo operations
	Feature Requests in the very beginning 11/2002
	DO‘s and DONT‘s

