
05.05.10

Shared Libraries

- Dynamic Load Libraries in MITK

Page 2 05.05.10 |

Markus Fangerau

MBI

A single compile process

The source .cpp to be compiled

Multiple header files from this and other classes

that this source .cpp depends on

Generated object binary

- Contains almost final compiled machine code

- References to other object binarys

 still need to resolved by the linker

Page 3 05.05.10 |

Markus Fangerau

MBI

Link process to generate final executable

Main program

object binarys

Static libraries

Final executable

binary

Page 4 05.05.10 |

Markus Fangerau

MBI

Now with DLLs

Main program

object binarys,

i.e. ExtApp,

SandboxApp

Static libraries

Final executable

binary

DLL

object binaries,

i.e. any MITK

module

Static libraries

Final DLL

binary

Application binaries are linked at runtime

Problems

- Windows requires to explicitly specify which methods/global variables are

exported/imported from a DLL

- Singletons in static libraries

Page 5 05.05.10 |

Markus Fangerau

MBI

Singleton problem

• if multiple dlls or the executable include a static library

with a singleton, it will be also multiple times instantiated.

• Problems arise, if objects are exchanged between the dlls

and the executable, that depend on the singleton.

• i.e. Lists of allocated objects, global time for modification

detection.

• A simple solution is, use only a „single“ singleton by

consolidiating the static library into a single dll, where

other dlls or the executable import from.

• However, its best to change design and to not depend on

singletons at all

Page 6 05.05.10 |

Markus Fangerau

MBI

Why shared libraries

• Statically linked libraries / executables:

• Linked at generation

• Each executable contains the full binary code of the static library

(causing redundancy on disk and memory)

• Dynamically linked libraries:

• Linked at runtime

• The binary code can be shared across multiple executables (saving

disk space)

• This works in process virtual adress space, too (saving memory).

• read-only pages are automatically shared across multiple

processes.

• writable pages may be manually shared by the DLL.

• Allows optional dynamic loading of plugins/bundles etc..

Page 7 05.05.10 |

Markus Fangerau

MBI

The MITK solution to the im/export problem

• Cmake generates special headers for each module

• From MitkExt:

 #ifndef MitkExt_EXPORTS_H
 #define MitkExt_EXPORTS_H
 #if defined(WIN32)
 #ifdef mitkCoreExt_EXPORTS
 #define MitkExt_EXPORT __declspec(dllexport)
 #else
 #define MitkExt_EXPORT __declspec(dllimport)
 #endif
 #else
 #define MitkExt_EXPORT
 #endif
 #ifndef _CMAKE_MODULENAME
 #ifdef mitkCoreExt_EXPORTS
 #define _CMAKE_MODULENAME "MitkExt"
 #endif
 #endif
#endif

Page 8 05.05.10 |

Markus Fangerau

MBI

The header in use

#include "MitkExtExports.h"

class MitkExt_EXPORT MovieGenerator : public
itk::LightObject

{

public:

 int Method(int x)

 {

 return x;

 }

 ...

};

Page 9 05.05.10 |

Markus Fangerau

MBI

Problems with templates

template <class T> class MitkExt_EXPORT
SampleTemplateClass

{

public:

 T TestMethod(T x)

 {

 return x*x;

 }

 ...

};

Do not use the Export Macro with templates. Templates are

first instantiated when required. Visual C++ will produce

linker errors, cause it assumes, that a template

specialization can be imported from a DLL, which doesn‘t

provide it.

