
3/18/2015 

Assembly-Level Debugging 

Alexandro Sánchez Bach 



Page 2 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Issue found in a multi-threaded algorithm. 

• Random worker threads crashing randomly at 

completely unrelated points. 



Page 3 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Our IDE is not helping much either. 

 

 

 

 

 

 

 

 

 

• No source code context. 

• No time/motivation to make wild guesses about what 

happened. 

 

 



Page 4 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Assembly-Level Debugging 

• Known in Visual Studio as Address-Level Debugging, and 

provide access to: 

• Memory windows 

• Disassembly panel 

• CPU registers panel 

• Memory write/execute breakpoints 

 

• Additionally, other solutions (e.g. OllyDbg) provide 

breakpoints on memory reading attempts as well. 

 

• Alternatives (discussed later): 

• GDB 

• Xcode 

 



Page 5 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Assembly 

C/C++ files Object files 

...               ...    ... 

0000000077B833E9  shr    rcx,4   

0000000077B833ED  cmp    rcx,rax   

0000000077B833F0  jae    0000000077B84B29   

0000000077B833F6  mov    r8d,dword ptr [rdx+8]   

0000000077B833FA  dec    r8d   

0000000077B833FD  cmp    rcx,r8   

0000000077B83400  jae    0000000077B834AA   

0000000077B83406  mov    eax,dword ptr [rdx+18h]   

0000000077B83409  sub    rcx,rax   

0000000077B8340C  cmp    dword ptr [rdx+0Ch],ebx   

0000000077B8340F  je     0000000077B83414   

0000000077B83411  xor    rax, rax 

0000000077B83414  mov    qword ptr [rcx + 8],rax 

0000000077B83418  lea    rbx,[rax+rcx*8]   

0000000077B8341C  test   rbx,rbx   

0000000077B8341F  je     0000000077B834B3   

0000000077B83425  mov    rcx,qword ptr [rbx+8]   

0000000077B83429  test   cl,1   

0000000077B8342C  je     0000000077B834B3   

0000000077B83432  dec    rcx   

0000000077B83435  mov    rdx,rsi   

0000000077B83438  mov    dword ptr [rsp+110h],2   

0000000077B83443  call   0000000077B84ED0   

0000000077B83448  test   rax,rax   

0000000077B8344B  je     0000000077B834B3   

0000000077B8344D  mov    rdi,rax   

0000000077B83450  test   bpl,8   

0000000077B83454  jne    0000000077B85921   

0000000077B8345A  test   rdi,rdi   

0000000077B8345D  je     0000000077BCBACC   

0000000077B83463  test   r14d,r14d   

0000000077B83466  jne    0000000077BCBBC2   

0000000077B8346C  cmp    byte ptr [7FFE0380h],0   

0000000077B83474  mov    r15,qword ptr [rsp+0D0h]   

0000000077B8347C  mov    r14,qword ptr [rsp+0D8h]   

0000000077B83484  mov    r13,qword ptr [rsp+0E0h]   

0000000077B8348C  mov    rbx,qword ptr [rsp+118h]   

0000000077B83494  jne    0000000077BCBC32   

0000000077B8349A  mov    rax,rdi   

0000000077B8349D  add    rsp,0E8h   

0000000077B834A4  pop    r12   

0000000077B834A6  pop    rdi   

0000000077B834A7  pop    rsi   

0000000077B834A8  pop    rbp 

...               ...    ... 

General Purpose registers: 
RAX, RBX, RCX, RDX, RSP, RBP, RSI, 

RDI, R8,  R9,  R10, R11, R12, R13, 

R14, R15 
 

FPU/SSE/AVX extension registers 
 

Segment registers 
 
 

 

...                 ...                      ... 

0x000000000699F720  1b 00 10 00 80 1f 00 00  ....€... 

0x000000000699F728  33 00 00 00 00 00 00 00  3....... 

0x000000000699F730  00 00 2b 00 00 02 00 00  ..+..... 

0x000000000699F738  00 00 00 00 00 00 00 00  ........ 

0x000000000699F748  e0 44 c3 77 00 00 00 00  àDÃw.... 

0x000000000699F750  00 00 00 00 00 00 00 00  ........ 

0x000000000699F758  3b 0f b5 77 00 00 00 00  ;.µw.... 

0x000000000699F760  70 57 bf 03 00 00 02 00  pW¿..... 

0x000000000699F768  00 00 00 00 00 00 01 00  ........ 

0x000000000699F778  30 d3 dd 03 00 00 00 00  0ÓÝ..... 

...                 ...                      ... 

xor  rax, rax 

mov  qword ptr [rcx + 8], rax 

Disassembly 

Registers 

Memory 

Compiler Linker 



Page 6 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Motivation 

• Spotting bugs where the information provided by the 

IDE’s standard debugging tools is not enough. 
 

• Non-trivial bugs in multi-threaded algorithms. 
 

• “Random” bugs. 
 

• Trashed stack or heap overflow related bugs. 
 

• Tracking back the cause of the bug from its effects. 

 



Page 7 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Back to our MITK example. 

 



Page 8 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Current instruction in the disassembly panel. 

 

 

 

 

 

 

• Current state of the thread. 

 

 

 

 

 



Page 9 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Current instruction in the disassembly panel. 

 

 

 

 

 

 

• Current state of the thread. 

 

 

 

 

 



Page 10 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Guessing* data types from their raw representation. 

• Floats: 

• Doubles: 

• Addresses: 

• Integers: 

• Uninit. data**:   

 

• Current state of the thread. 

 

 

 

 

 

*  Disclaimer: This is not science, but just a shortcut. 

** Only on debug configuration. Magic values for Visual Studio only. 

~0x40000000 or ~0xC0000000 
 

~0x4000000000000000 or ~0xC000000000000000  
 

0x0000XXXXXXXXXXXX or 0xFFFF000000000000  
 

0xXXXXXXXXXXXXXXXX 
 

0xCCCCCCCC (stack) or 0xCDCDCDCD (heap) 



Page 11 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Where did the RCX value come from? 

 push   rbp 

... 

mov    r12,rax 

... 

mov    rcx,qword ptr[rax+18h] 

... 

mov    rax,rbx 

... 

call   000000007563AF1A 

... 

pop rpb 

ret 

 



Page 12 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• The base address is still preserved in R12. 

 

• The value that is written into RCX is at the address: 
R12 + 0x18. 

 

 

 

 

 

 

 

• Current state of the thread: 



Page 13 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Current state of the memory: 

 

 

 

 

 

 

• Current state of the thread: 

Little endianness 

+ 0x18 



Page 14 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Current state of the memory: 

Floating-point data … 

Uninitialized 

heap buffer 



Page 15 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• If all pointers to the overflown buffer 0x0A7A8B00 had 

disappeared, there would be a memory leak. 

 

• Therefore, this address should be still accessible inside 

some function(s) in the call stack of some thread(s). 

 

 



Page 16 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Example 

• Since the address was allocated by our own code, we have 

debugging symbols and the buffer is shown as: 

 

 

 

 

 

 

• We are no longer in a „source code“-less situation. 

• Allocation happens in a fixed thread. 

• Therefore, now we can continue using the standard 

debugging tools our IDE provides. 

Value Type 

... ... 

0x000000000A7A8B00 {...} float * 

... ... 



Page 17 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Extra motivation 

• Outsmarting the compiler in hot loops. 
 

• Gaining a better understanding of compilers. 

 

 

 

 

 

 

 

 

• Reverse engineering. 
 

• Fastest understanding of code written by others. 



Page 18 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Questions 

• Any questions? 



Page 19 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Alternatives 

• All of them are based on the same tools: 

• Memory panels. Mostly focused on: 

• Stack 

• Heap area 

• .bss sections 

• Disassembly panel 

• Registers panel 

• Memory read/write/execute breakpoints 

 

• Alternatives: 

• GDB 

• Xcode 



Page 20 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Alternatives 

• GDB 



Page 21 3/18/2015 | 

Alexandro Sánchez Bach 

Computer Assisted 

Interventions (E131) 

Alternatives 

• Xcode 


