
10/7/2015

C++11 Containers set & map

Sandy Engelhardt

Medical and Biological Informatics (MBI)

Page 2 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

Standard Containers

• set<Key, Compare>

• map<Key, Value, Compare>

• Maintains its elements internally in a way that it …

• allows for fast traversal in non-decending key order

• allows for fast retrieval by key according to the provided

Compare type e.g. „operator<()“

• whenever a new key is inserted into a container, the

container finds a proper place for insertion so that it

maintains the proper ordering of the internal data structure

Page 3 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

Key Insertion

Whenever a new key is inserted into a container, the container finds

a proper place for insertion so that it maintains the proper ordering of

the internal data structure.

Internally usually stored as binary tree in all current standard library

implementations

map<int, string> m;

37, Tim Berners-Lee

23, Alan Turing

3, Judea Perl 31, Alan Key

59, Larry Page

39, Ada Lovelace 65, Grace Hopper

Page 4 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

Changing the Key

Once a key has been inserted, it should not be changed in a

way that would change its relative position in the container.

• assumptions about the ordering of the entries are violated

• searches for valid entries could fail

• iterators would no longer be guaranteed to traverse the

contents in key order

Page 5 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

Example with iterator

map<int, string> m;

map<int,string>::iterator i = m.find(23);

if (i != m.end())

{

const_cast<int & > (i -> first) = 988;

}

37, Tim Berners-Lee

23, Alan Turing

3, Judea Perl 31, Alan Key

59, Larry Page

39, Ada Lovelace 65, Grace Hopper

988, Alan Turing

--> a search for key 31 would fail

points to a pair

<const key,

value>

Page 6 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

Example with iterator

map<int, string> m;

map<int,string>::iterator i = m.find(23);

if (i != m.end())

{

const_cast<int & > (i -> first) = 25;

}

37, Tim Berners-Lee

23, Alan Turing

3, Judea Perl 31, Alan Key

59, Larry Page

39, Ada Lovelace 65, Grace Hopper

25, Alan Turing

--> relative order remains unchanged

Page 7 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

„Const Means const!“

• const_cast: C++ actively tries to prevent code that changes

the relative ordering of keys

• Keys should not be modified at all, while values are of

course allowed to be changed !!

Page 8 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

Use standard methods

map<int,string>::iterator i = m.find(23);

if (i != m.end())

{

 string s = i->second;

 m.erase(i);

 m.insert(make_pair(988, s)); // better

}

37, Tim Berners-Lee

23, Alan Turing

3, Judea Perl 31, Alan Key

59, Larry Page

39, Ada Lovelace 65, Grace Hopper

988, Alan Turing +

Page 9 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

std::set und std::map in C++ 11

• set<Key>

• map<Key, Value>

In the old standard, it was possible to change the key of a std::set ,

which was different in comparison to a std::map

map<int, int> mm{{1,1}, {6,6}, {4,4}}

auto it = ss.find(4);

it->second = 42; // ok, changes only the value

it->first = 42; // never worked before: assignment of a

 read-only location

set<int> ss {1,2,8,6,4};

auto it = ss.find(4);

*it = 7; // NEW in C++11 ERROR: assignment of a read-only

location

Further information on www.dkfz.de

Thank you

for your attention!

Page 11 10/7/2015 |

Sandy Engelhardt

Med. and Biol. Informatics

Further reading…

• Torsten T. Will, C++11 programmieren. Galileo Computing,

2012

