ITK vs. VTK SmartPointer

Andreas Fetzer
02.10.2013



What is a SmartPointer in general

Every new requires a delete
A SmartPointer wraps a bare C++ pointer

Helps to manage the lifetime of the object it is pointing to
No explicit delete is neccessary

Somehow similar to java garbage collection

— Difference: With SmartPointers you can exactly determine when
the object should be deleted



ITK SmartPointer

* NOW new itxobject() 1S pOSSible

* Increments reference count on assignment
(overloaded ,=“ operator)

1tkObject::Pointer o = 1itkObject: :New ()

e Pitfalls:

itk::Image<int, 3>* imageptr = itk::Image<int,3>::New/();



VTK SmartPointer

vtkObjects increment reference count on creation!

Assignment to a SmartPoint also increments reference
count

Examples:

— vtkPolyData* pd ptr = vtkPolyData::New();
pd ptr->Delete () ;

— vtkSmartPointer<vtkPolyData> pd =
vtkSmartPointer<vtkPolyData>: :New() ;

— vtkSmartPointer<vtkPolyData> pd = vtkPolyData: :New ()
Reference count 2!

— pd.TakeReference (pd ptr) or static ::Take



Fazit

* Use SmartPointer as often as possible and as
consistent as possible

— An indicator would be how often your clients have
to call delete manually

* Good practice since years for bigger projects



