

Git detached head

Andreas Fetzer
14.11.2012 MBI

?

Background

What happened?

● HEAD usually is a symbolic reference to (the tip
of) a branch.

e.g. cat .git/HEAD prints

refs: refs/heads/master

Or:

refs: refs/heads/myBranch

What happened

● However if you checkout anything that is not a
proper local branch name HEAD simply
contains the SHA-1 hash of the commit you are
pointing to:

Command which detached you
HEAD

git checkout master^ # parent of master

git checkout HEAD~2 # grandparent of current HEAD

git checkout origin/master # a non-local branch

git checkout tagname # since you cant commit to a tag

Re-attaching the HEAD

● Even if you made a few commits before you
realized you lost your HEAD:

git checkout -b newbranch

● Now HEAD is again pointing to a branch which
is based upon the commit your HEAD was
pointing to and everything is fine

Re-attaching the HEAD

● But what if you completely didn't realize you
had no HEAD, made some (livesafing) commits
and then switched to a existing branch...?

● The SHA-1 hash of your previous HEAD is
overwritten since HEAD points now to the
existing branch

● Is you lifesafing commit lost forever?

Git reflog

● Stores the changes which have been done,
which command invoked those changes and
when the changes did happen...up to 30 days!!

Git reflog

● You can easily retrieve the „lost“ commit by
simply creating a new branch basing on it.

● Because Git is awesome it gives your the
correct suggestion:

That's it!

● Very good explanation at:

http://sitaramc.github.com/concepts/detached-
head.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

