@«

O

O

Git detached head o

Andreas Fetzer
14.11.2012 MBI

Background

mbimac@®5:MITK andreas$ git checkout HEAD~2
Note: checking out "HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at 48b542b... Merge branch 'bug-13545-CorrectCp3Placement’

What happened?

 HEAD usually is a symbolic reference to (the tip
of) a branch.

e.g.cat . git/ HEAD prints

refs: refs/ heads/ naster

Or:

refs:. refs/heads/ nyBranch

What happened

 However if you checkout anything that is not a
proper local branch name HEAD simply
contains the SHA-1 hash of the commit you are
pointing to:

mbimac@5:MITK andreas$ git checkout HEAD~2
Mote: checking out "HEAD~2'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make 1in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at

48b542b. ..

Merge branch 'bug-13545-CorrectCp3Placement’

git
git

git

Command which detached you

checkout
checkout
checkout

checkout

mast er
HEAD~2

HEAD

parent of master

grandparent of current HEAD

origin/master # a non-|local branch

t agnane

since you cant conmt to a tag

Re-attaching the HEAD

* Even if you made a few commits before you
realized you lost your HEAD:

git checkout -b newbranch

 Now HEAD is again pointing to a branch which
IS based upon the commit your HEAD was
pointing to and everything is fine

Re-attaching the HEAD

 But what if you completely didn't realize you
had no HEAD, made some (livesafing) commits
and then switched to a existing branch...?

 The SHA-1 hash of your previous HEAD is
overwritten since HEAD points now to the
existing branch

* |s you lifesafing commit lost forever?

Git reflog

» Stores the changes which have been done,
which command invoked those changes and
when the changes did happen...up to 30 days!!

mbimac@5:MITK andreas$ git reflog show HEAD
HEAD@{0}: checkout: moving from 9d24d914874843a832b7¢
HEAD@{1}: commit: Still BS
HEAD@{2}: checkout: moving from master to HEAD~2
HEAD@{3}: checkout: moving from BSBranch to master

Git reflog

* You can easily retrieve the ,lost” commit by
simply creating a new branch basing on it.

» Because Git is awesome it gives your the
correct suggestion:

mbimac@5:MITK andreas$ git co master
Warning: you are leaving 1 commit behind, not connected to
any of your branches:

9d24d91 5till BS

If you want to keep them by creating a new branch, this may be a good time
to do so with:

git branch new_branch_name 9d24d914874843a832b78893d025c4920158982e

Switched to branch 'master'’
Your branch 1is ahead of 'origin/master' by 100 commits.

That's it!
* Very good explanation at:

http://sitaramc.github.com/concepts/detached-
head.html

© O

v

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

