
Interaction and Undo

Ingmar Wegner

Page 29/20/2010 |

MITK Interaction
I. Wegner

• DataNodes are stored within DataStorage and are parsed
during rendering. One datum is connected to one DataNode

• Visualization is done by VTK
• Image processing is done by ITK

• MITK is GUI independent, MITK ExtApp uses QT

• See hyperlinks to doxygen documentation for further reading

What should be known by now

http://docs.mitk.org/nightly-qt4/classes.html�

Page 39/20/2010 |

MITK Interaction
I. Wegner

• Interaction
•What’s this?
•Feature requests for MITK
•Solution (state machines)
•Example interaction sequence

• Undo (/ Redo)
•Feature requests
•Example undo sequence

Contents

Page 49/20/2010 |

MITK Interaction
I. Wegner

User can modify data during runtime using input devices.

What is interaction?

Page 59/20/2010 |

MITK Interaction
I. Wegner

Interaction:
• Representation of complex workflows
• Possibility to quickly modify the interaction
• Reuse of interaction
• Independent from GUI toolkit
• User- and developer-friendly
• Allows flexibility
• Not dependent on visualization (2D / 3D)

Undo:
• Offer flexible undo / redo functionality
• Save memory resources

Feature requests in the beginning 11/2002

Page 69/20/2010 |

MITK Interaction
I. Wegner

Interaction:
• Representation of complex workflows
So use state machines (Mealy / More)

• Possibility to quickly modify the interaction
Without recompile? Then use a generic way of loading
interaction patterns during startup.

• Reuse of interaction
Then one interactor per data object and the developer
defines what it does. Several equivalent data objects use
the same interaction pattern.

Answers

Mealy

Page 79/20/2010 |

MITK Interaction
I. Wegner

• Independent from GUI toolkit
Create a layer in between

• User- and developer-friendly
Swiss army knife? / *Eierlegende Woll-Milch-Sau* …
focus on user-friendly

• Allows flexibility
Adapting patterns without recompile,
data objects still accessible,
equal interactors can have different patterns …

• Not dependent on visualization (2D / 3D)
Change the data independent from visualization

Answers

Page 89/20/2010 |

MITK Interaction
I. Wegner

A Mealy state machine consists of:
•States
•Events
•Transitions
•Actions

Mealy: State is passive, transition causes change of data.
(More: State is the active part)

State machine (Mealy)

Page 99/20/2010 |

MITK Interaction
I. Wegner

Has to have:
•One start state
•No dead state (not reachable)
•No magic state (transition
leaves the state but can not be
reached by others, not a start
state)

State machine

•No dead loop
•Deterministic transitions (no
equal transitions leading to
different states)

1 2 3

4 5

67

A/X

A/U B/V

F/W E/W

C/K
A/X

magic state

dead loop

dead state

Start state

end state

Page 109/20/2010 |

MITK Interaction
I. Wegner

Guard state: temporary state to check for a condition

State machine

add
delete
check

no / delete

yes / delete

empty

reserved

full

n > 1

n <
max-1

add check

delete

no / add

yes / add

Page 119/20/2010 |

MITK Interaction
I. Wegner

mitkState
mitkTransition
mitkAction

According to a description several objects are instantiated
and connected to each other during startup. Objects of type
mitkTransition connect two objects of type mitkState in
one direction (e.g. from state 1 to state 2). They contain the
information on which event a state change may be done
(EventID). They contain several objects of class
mitkAction that specify the actions that are done after a
state change.

All objects together represent the so called
state machine pattern

Classes in MITK to implement a state
machine

http://docs.mitk.org/nightly-qt4/classmitk_1_1State.html�
http://docs.mitk.org/nightly-qt4/classmitk_1_1Transition.html�
http://docs.mitk.org/nightly-qt4/classmitk_1_1Action.html�

Page 129/20/2010 |

MITK Interaction
I. Wegner

So, a state machine pattern defines the workflow of a special
interaction procedure (e.g. interacting with a set of points).

All available patterns are loaded by a StateMachineFactory
during startup (StateMachine.xml)

…
<stateMachine NAME=“dumm example of the MITK state machine pattern xml syntax">

<state NAME=“first" ID="1" START_STATE="TRUE">
<transition NAME=“to2" NEXT_STATE_ID="2" EVENT_ID=“A">

<action ID=“X" />
</transition>
<transition NAME=“to1" NEXT_STATE_ID=“1" EVENT_ID=“B">

<action ID=“Φ" />
</transition>

</state>
<state NAME=“second" ID=“2" >

<transition NAME=“to1" NEXT_STATE_ID=“1" EVENT_ID=“B">
<action ID=“Y" />

</transition>
</state>

</stateMachine>
…

Generically loading of interaction patterns

Note: Also event IDs and action IDs
are of type int in MITK

http://docs.mitk.org/nightly-qt4/classmitk_1_1StateMachineFactory.html�

Page 139/20/2010 |

MITK Interaction
I. Wegner

See related pages for section State Machine Editor:
graphical tool (eclipse plug-in) to create, modify and view
state machine patterns

State Machine Editor

http://docs.mitk.org/nightly-qt4/StatemachineEditor.html�

Page 149/20/2010 |

MITK Interaction
I. Wegner

Class mitk::StateMachine implements all methods for the use
of a state machine.

class StateMachine : public itk::Object, public mitk::OperationActor
{
…
public:

virtual bool HandleEvent (StateEvent const *stateEvent);
…
protected:

virtual bool ExecuteAction (Action *action, StateEvent const *stateEvent);
…
private:

std::vector<State::Pointer> m_CurrentStateVector;
…
}

State machine logic

http://docs.mitk.org/nightly-qt4/classmitk_1_1StateMachine.html�

Page 159/20/2010 |

MITK Interaction
I. Wegner

mitk::Interactor is derived from mitk::StateMachine and
adds dependency to one data.

One interactor takes care of one data

node

data interactor

data
storage

http://docs.mitk.org/nightly-qt4/classmitk_1_1Interactor.html�

Page 169/20/2010 |

MITK Interaction
I. Wegner

From mitk::Interactor derived classes add the implementation
of actions that will lead to a change of data. Example:

class LightSwitch : public StateMachine
{
public:

mitkClassMacro(LightSwitch, StateMachine);
LightSwitch(const char*);
bool DoSwitchOn(Action*, const StateEvent*);
bool DoSwitchOff(Action*, const StateEvent*);

}
LightSwitch::LightSwitch(const char* type) :StateMachine(type)
{

CONNECT_ACTION(AcSWITCHON, DoSwitchOn);
CONNECT_ACTION(AcSWITCHOFF, DoSwitchOff);

}
bool LightSwitch::DoSwitchOn(Action*, const StateEvent*)
{

MITK_INFO<< "Enlightenment \n";
}
bool LightSwitch::DoSwitchOff(Action*, const StateEvent*)
{

MITK_INFO << "Confusion \n";
}

Derived classes

Page 179/20/2010 |

MITK Interaction
I. Wegner All together it‘s a state machine!

Logic

Pattern

* current State

process events
implement actions

State machine

mitk::MyStateMachine::Pointer myStateMachine =
mitk::MyStateMachine::New(“myPattern“, nodeOfData);

Page 189/20/2010 |

MITK Interaction
I. Wegner Reuse of patterns

Because each object of type StateMachine pointers to one
state of the specified state machine pattern, many objects
can reuse one pattern.

Page 199/20/2010 |

MITK Interaction
I. Wegner Doxygen mitk::StateMachine

by 9/17/2010

http://docs.mitk.org/nightly-qt4/classmitk_1_1StateMachine.html�

Page 209/20/2010 |

MITK Interaction
I. Wegner Detail from Doxygen mitk::StateMachine

by 9/17/2010

http://docs.mitk.org/nightly-qt4/classmitk_1_1StateMachine.html�

Page 219/20/2010 |

MITK Interaction
I. Wegner

How to administrate several interactors?
Let one be the leader!

So many interactors!

GlobalInteraction

http://docs.mitk.org/nightly-qt4/classmitk_1_1GlobalInteraction.html�

Page 229/20/2010 |

MITK Interaction
I. Wegner

• Administrates several state machines:
• Interactors: Set onto one DataNode and thus associated

to one data (e.g. PointSetInteractor to PointSet)
• „Listeners“: StateMachines that modify visualization, not

data (e.g. CorrdinateSupplier for StatusBar)

class GlobalInteraction : public StateMachine
{

public: …
void AddInteractor(Interactor* interactor);
bool RemoveInteractor(Interactor* interactor);
void AddListener(StateMachine* listener);
bool RemoveListener(StateMachine* listener);

...}

An event is sent to all Listeners and only to the one Interacor,
that float Interactor::CanHandleEvent(…) the best.

GlobalInteraction

Page 239/20/2010 |

MITK Interaction
I. Wegner

keyboard / mouse etc.

GlobalInteraction

EventMapper XML

Data

E,a XML

SpecialInteractorOperation

Interaction sequence

Page 249/20/2010 |

MITK Interaction
I. Wegner

Class mitk::Operation is a container for all information
important for a change of data. Example:

…within MySpecialInteractor::ExecuteAction(…)

mitk::Point3D itkPoint = theEvent->GetWorldPosition();
PointOperation* doOp = new mitk::PointOperation(

OpINSERT, timeInMS, itkPoint, pointSet->Size());

pointSet->ExecuteOperation(doOp);

Operations

What to do? When? Change to? Where?

http://docs.mitk.org/nightly-qt4/classmitk_1_1Operation.html�

Page 259/20/2010 |

MITK Interaction
I. Wegner

Undo / Redo functionality!

Represents an extra layer between
interaction classes taking care of changing data
and data.

Why Operations?

Data
SpecialInteractorOperation

Page 269/20/2010 |

MITK Interaction
I. Wegner

keyboard / mouse etc.

GlobalInteraction

EventMapper

UndoController

Data

E,a

SpecialInteractorOperation

Undo sequence

Page 279/20/2010 |

MITK Interaction
I. Wegner

…within MySpecialInteractor::ExecuteAction(…)

mitk::Point3D itkPoint = theEvent->GetWorldPosition();
PointOperation* doOp = new mitk::PointOperation(

OpINSERT, timeInMS, itkPoint, pointSet->Size());

if (m_UndoEnabled)
{

PointOperation *undoOp = new mitk::PointOperation(
OpREMOVE, timeInMS, itkPoint, pointSet->Size());

OperationEvent *operationEvent =
new OperationEvent(pointSet, doOp, undoOp, "Add point");

m_UndoController->SetOperationEvent(operationEvent);
}

pointSet->ExecuteOperation(doOp);

Undo operations

Page 289/20/2010 |

MITK Interaction
I. Wegner

Undo:
• Offer flexible undo / redo functionality
Can be enabled and disabled. Thorough programming
includes undo, rapid prototyping doesn’t care about undo.

• Save memory resources
Only store parameters how operations can be undone

PointOperation *undoOp = new mitk::PointOperation(
OpREMOVE, timeInMS, itkPoint, pointSet->Size());

If impossible (e.g. image filters), store backups if
necessary

Feature Requests in the beginning 11/2002

Page 299/20/2010 |

MITK Interaction
I. Wegner

• http://www.mitk.org/wiki/Interaction_concept

• Doxygen documentation on mitkGlobalInteraction,
mitkStateMachine

• Tutorial Step10 shows what to modify to add a new
interactor

Further reading:

http://www.mitk.org/wiki/Interaction_concept�

	�Interaction and Undo�
	What should be known by now
	Contents
	What is interaction?
	Feature requests in the beginning 11/2002
	Answers
	Answers
	State machine (Mealy)
	State machine
	State machine
	Classes in MITK to implement a state machine
	Generically loading of interaction patterns
	State Machine Editor
	State machine logic
	One interactor takes care of one data
	Derived classes
	All together it‘s a state machine!
	Reuse of patterns
	Doxygen mitk::StateMachine
	Detail from Doxygen mitk::StateMachine
	So many interactors!
	GlobalInteraction
	Interaction sequence
	Operations
	Why Operations?
	Undo sequence
	Undo operations
	Feature Requests in the beginning 11/2002
	Further reading:

