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• DataNodes are stored within DataStorage and are parsed 
during rendering. One datum is connected to one DataNode

• Visualization is done by VTK
• Image processing is done by ITK

• MITK is GUI independent, MITK ExtApp uses QT

• See hyperlinks to doxygen documentation for further reading

What should be known by now

http://docs.mitk.org/nightly-qt4/classes.html�
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• Interaction
•What’s this?
•Feature requests for MITK
•Solution (state machines)
•Example interaction sequence

• Undo (/ Redo)
•Feature requests
•Example undo sequence

Contents
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User can modify data during runtime using input devices.

What is interaction?
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Interaction:
• Representation of complex workflows
• Possibility to quickly modify the interaction
• Reuse of interaction
• Independent from GUI toolkit
• User- and developer-friendly
• Allows flexibility
• Not dependent on visualization (2D / 3D)

Undo:
• Offer flexible undo / redo functionality
• Save memory resources

Feature requests in the beginning 11/2002
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Interaction:
• Representation of complex workflows
So use state machines (Mealy / More)

• Possibility to quickly modify the interaction
Without recompile? Then use a generic way of loading 
interaction patterns during startup.

• Reuse of interaction
Then one interactor per data object and the developer 
defines what it does. Several equivalent data objects use 
the same interaction pattern. 

Answers

Mealy
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• Independent from GUI toolkit
Create a layer in between 

• User- and developer-friendly
*Swiss army knife?* / *Eierlegende Woll-Milch-Sau* … 
focus on user-friendly

• Allows flexibility
Adapting patterns without recompile, 
data objects still accessible, 
equal interactors can have different patterns …

• Not dependent on visualization (2D / 3D)
Change the data independent from visualization

Answers
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A Mealy state machine consists of:
•States
•Events
•Transitions 
•Actions

Mealy: State is passive, transition causes change of data.
(More: State is the active part)

State machine (Mealy)
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Has to have:
•One start state
•No dead state (not reachable) 
•No magic state (transition
leaves the state but can not be
reached by others, not a start
state)

State machine

•No dead loop
•Deterministic transitions (no
equal transitions leading to
different states)

1 2 3

4 5

67

A/X

A/U B/V

F/W E/W

C/K
A/X

magic state

dead loop

dead state

Start state

end state



Page 109/20/2010 |

MITK Interaction
I. Wegner

Guard state: temporary state to check for a condition 

State machine 

add
delete
check

no / delete

yes / delete

empty

reserved

full

n > 1

n < 
max-1

add check

delete

no / add

yes / add
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mitkState
mitkTransition
mitkAction

According to a description several objects are instantiated
and connected to each other during startup. Objects of type
mitkTransition connect two objects of type mitkState in
one direction (e.g. from state 1 to state 2). They contain the
information on which event a state change may be done
(EventID). They contain several objects of class
mitkAction that specify the actions that are done after a
state change.

All objects together represent the so called 
state machine pattern

Classes in MITK to implement a state 
machine

http://docs.mitk.org/nightly-qt4/classmitk_1_1State.html�
http://docs.mitk.org/nightly-qt4/classmitk_1_1Transition.html�
http://docs.mitk.org/nightly-qt4/classmitk_1_1Action.html�
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So, a state machine pattern defines the workflow of a special 
interaction procedure (e.g. interacting with a set of points). 

All available patterns are loaded by a StateMachineFactory
during startup (StateMachine.xml)

…
<stateMachine NAME=“dumm example of  the MITK state machine pattern xml syntax">

<state NAME=“first" ID="1" START_STATE="TRUE">
<transition NAME=“to2" NEXT_STATE_ID="2" EVENT_ID=“A">

<action ID=“X" />
</transition>
<transition NAME=“to1" NEXT_STATE_ID=“1" EVENT_ID=“B">

<action ID=“Φ" />
</transition>

</state>
<state NAME=“second" ID=“2" >

<transition NAME=“to1" NEXT_STATE_ID=“1" EVENT_ID=“B">
<action ID=“Y" />

</transition>
</state>

</stateMachine>
…

Generically loading of interaction patterns

Note: Also event IDs and action IDs
are of type int in MITK

http://docs.mitk.org/nightly-qt4/classmitk_1_1StateMachineFactory.html�
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See related pages for section State Machine Editor:
graphical tool (eclipse plug-in) to create, modify and view 
state machine patterns

State Machine Editor

http://docs.mitk.org/nightly-qt4/StatemachineEditor.html�
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Class mitk::StateMachine implements all methods for the use 
of a state machine.

class StateMachine : public itk::Object, public mitk::OperationActor
{
…
public:

virtual bool HandleEvent (StateEvent const *stateEvent);
…
protected:

virtual bool ExecuteAction (Action *action, StateEvent const *stateEvent);
…
private:

std::vector<State::Pointer> m_CurrentStateVector;
…
}

State machine logic

http://docs.mitk.org/nightly-qt4/classmitk_1_1StateMachine.html�
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mitk::Interactor is derived from mitk::StateMachine and
adds dependency to one data. 

One interactor takes care of one data

node

data interactor

data
storage

http://docs.mitk.org/nightly-qt4/classmitk_1_1Interactor.html�
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From mitk::Interactor derived classes add the implementation 
of actions that will lead to a change of data. Example:

class LightSwitch : public StateMachine
{ 
public: 

mitkClassMacro(LightSwitch, StateMachine); 
LightSwitch(const char*); 
bool DoSwitchOn(Action*, const StateEvent*); 
bool DoSwitchOff(Action*, const StateEvent*); 

} 
LightSwitch::LightSwitch(const char* type) :StateMachine(type) 
{

CONNECT_ACTION( AcSWITCHON, DoSwitchOn ); 
CONNECT_ACTION( AcSWITCHOFF, DoSwitchOff ); 

} 
bool LightSwitch::DoSwitchOn(Action*, const StateEvent*) 
{ 

MITK_INFO<< "Enlightenment \n"; 
} 
bool LightSwitch::DoSwitchOff(Action*, const StateEvent*)
{ 

MITK_INFO << "Confusion \n"; 
} 

Derived classes
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Logic

Pattern

* current State

process events
implement actions

State machine

mitk::MyStateMachine::Pointer myStateMachine = 
mitk::MyStateMachine::New(“myPattern“, nodeOfData);
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Because each object of type StateMachine pointers to one 
state of the specified state machine pattern, many objects 
can reuse one pattern. 
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by 9/17/2010

http://docs.mitk.org/nightly-qt4/classmitk_1_1StateMachine.html�
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by 9/17/2010

http://docs.mitk.org/nightly-qt4/classmitk_1_1StateMachine.html�
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How to administrate several interactors?
Let one be the leader!

So many interactors!

GlobalInteraction

http://docs.mitk.org/nightly-qt4/classmitk_1_1GlobalInteraction.html�
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• Administrates several state machines:
• Interactors: Set onto one DataNode and thus associated 

to one data (e.g. PointSetInteractor to PointSet)
• „Listeners“: StateMachines that modify visualization, not 

data (e.g. CorrdinateSupplier for StatusBar)

class GlobalInteraction : public StateMachine
{

public: …
void AddInteractor(Interactor* interactor);
bool RemoveInteractor(Interactor* interactor);
void AddListener(StateMachine* listener);
bool RemoveListener(StateMachine* listener);

...}

An event is sent to all Listeners and only to the one Interacor, 
that float Interactor::CanHandleEvent(…) the best.

GlobalInteraction
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keyboard / mouse etc.

GlobalInteraction

EventMapper XML

Data

E,a XML

SpecialInteractorOperation

Interaction sequence
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Class mitk::Operation is a container for all information 
important for a change of data. Example:

…within MySpecialInteractor::ExecuteAction(…)

mitk::Point3D itkPoint = theEvent->GetWorldPosition();
PointOperation* doOp = new mitk::PointOperation(

OpINSERT, timeInMS, itkPoint, pointSet->Size());

pointSet->ExecuteOperation(doOp);

Operations

What to do? When? Change to? Where?

http://docs.mitk.org/nightly-qt4/classmitk_1_1Operation.html�
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Undo / Redo functionality!

Represents an extra layer between 
interaction classes taking care of changing data
and data.

Why Operations?

Data
SpecialInteractorOperation
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keyboard / mouse etc.

GlobalInteraction

EventMapper

UndoController

Data

E,a

SpecialInteractorOperation

Undo sequence
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…within MySpecialInteractor::ExecuteAction(…)

mitk::Point3D itkPoint = theEvent->GetWorldPosition();
PointOperation* doOp = new mitk::PointOperation(

OpINSERT, timeInMS, itkPoint, pointSet->Size());

if (m_UndoEnabled)
{

PointOperation *undoOp = new mitk::PointOperation(
OpREMOVE, timeInMS, itkPoint, pointSet->Size());

OperationEvent *operationEvent = 
new OperationEvent(pointSet, doOp, undoOp, "Add point");

m_UndoController->SetOperationEvent(operationEvent);
}

pointSet->ExecuteOperation(doOp);

Undo operations
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Undo:
• Offer flexible undo / redo functionality
Can be enabled and disabled. Thorough programming 
includes undo, rapid prototyping doesn’t care about undo.

• Save memory resources
Only store parameters how operations can be undone

PointOperation *undoOp = new mitk::PointOperation(
OpREMOVE, timeInMS, itkPoint, pointSet->Size());

If impossible (e.g. image filters), store backups if 
necessary

Feature Requests in the beginning 11/2002
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• http://www.mitk.org/wiki/Interaction_concept

• Doxygen documentation on mitkGlobalInteraction, 
mitkStateMachine

• Tutorial Step10 shows what to modify to add a new
interactor

Further reading:

http://www.mitk.org/wiki/Interaction_concept�
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