C++ Inheritacne

Sascha Zelzer

MBI@DKFZ

11.05.2011


mailto:MBI@DKFZ

C++ Inheritance

Fundamental features in OOP:

= Encapsulation
= Polymorphism
= Inheritance



Class Relationships

Two kinds of relationships between classes:
= "part-of”
= "kind-of”

Inheritance allows to create classes which are
derived from other classes ("kind-of” relationship).




Class Relationships (Example)

"part-of’ (composition, aggregation)
class Engine {};
class Car {

private: Engine engine;

}

"kind-of” (Inheritance)
class Vehicle {};

class Car : public Vehicle { .. };



Access Specifiers

= Inheritance access specifiers:
public, protected, private

class Car : private Engine {

}; —— syntactic variant of composition
Access public protected private
Members of the same class yes yes yes
Members of derived classes yes yes no
Non-members yes no no

Use composition when you can,
private inheritance when you have to!



Substitution Principle

If S is a derived type of T, then objects of type T In
a program may be replaced with objects of type S
without altering any of the desirable properties of
that program.

class Rectangle {

public:
int getWidth() const; int getHeight() const;
void setWidth(); void setHeight();

}i

class Square : public Rectangle {};



= Favor composition over inheritance

= Never hide member functions from base
classes in your derived class

= Use Abstract Base Classes (ABC) to create
Interfaces

Questions?



