
2009/06/17

How source code becomes
executable (the “Play” button)

Daniel Maleike

Bjarne Stroustrup

Vorführender
Präsentationsnotizen
The presentation is by Daniel Maleike as a short introduction of the Wednesday bugs quashing party.The image shows Bjarne Stroustrup, designer and original implementor of C++. The image is just to show whom to blame :-)

Page 22009/06/17 |

Daniel Maleike
MBI

How source code becomes executable

Vorführender
Präsentationsnotizen
Minimally object oriented hellow world, includingSeveral files, “headers” and “source code”InheritanceConditional compilation (#ifdef)Usage of the STL (std::cout)

Page 32009/06/17 |

Daniel Maleike
MBI

How source code becomes executable

Vorführender
Präsentationsnotizen
Linux Journal article “Linkers and Loaders”: http://www.linuxjournal.com/article/6463Wikipedia articles:Linker: http://en.wikipedia.org/wiki/LinkerName mangling: http://en.wikipedia.org/wiki/Name_mangling

Page 42009/06/17 |

Daniel Maleike
MBI

Simple text substitution before compile-time

• #include <filename>

• #define/#undef condition

• #ifdef/#ifndef condition, #else, #endif

• #define RADTODEG(x) ((x) * 57.29578)

• Stringification: #x expands to “<exp. of x>”

• Concatenation: x ## y concatenates
the expansions of x and y

The Preprocessor

Vorführender
Präsentationsnotizen
Perfect summary of preprocessor in: Kelley, A Book on C

Page 52009/06/17 |

Daniel Maleike
MBI

Simple text substitution before compile-time

• #include <filename>

• #define/#undef condition

• #ifdef/#ifndef condition, #else, #endif

• #define RADTODEG(x) ((x) * 57.29578)

• Stringification: #x expands to “<exp. of x>”

• Concatenation: x ## y concatenates
the expansions of x and y

The Preprocessor

Vorführender
Präsentationsnotizen
Perfect summary of preprocessor in: Kelley, A Book on C

Page 62009/06/17 |

Daniel Maleike
MBI

Qt: moc, uic

moc
• produce meta-objects, needed for signals and slots in Qt

uic
• create code which can create the designed form at run-time

Useful links:

http://doc.trolltech.com/4.5/moc.html
http://doc.trolltech.com/4.5/designer-using-a-ui-file.html

Vorführender
Präsentationsnotizen
Two more tools running before actual compilation. moc and uic are only used when developing with the Qt toolkit.

Page 72009/06/17 |

Daniel Maleike
MBI

• Translates one (complete) piece of source code into one
piece of binary code

• Binary code may depend on external code (symbols)
• variables/functions declared but not defined need to be

defined somewhere else before execution
• jumps/function calls to unknown addresses
• from an early C++ compiler: name mangling

The Compiler

Vorführender
Präsentationsnotizen
Wikipedia overview w/ some good links: http://en.wikipedia.org/wiki/Name_mangling

Page 82009/06/17 |

Daniel Maleike
MBI

• Translates one (complete) piece of source code into one
piece of binary code

• Binary code may depend on external code (symbols)
• variables/functions declared but not defined need to be

defined somewhere else before execution
• jumps/function calls to unknown addresses
• from an early C++ compiler: name mangling

The Compiler

Vorführender
Präsentationsnotizen
Wikipedia overview w/ some good links: http://en.wikipedia.org/wiki/Name_mangling

Page 92009/06/17 |

Daniel Maleike
MBI

• Translates one (complete) piece of source code into one
piece of binary code

• Binary code may depend on external code (symbols)
• variables/functions declared but not defined need to be

defined somewhere else before execution
• jumps/function calls to unknown addresses
• from an early C++ compiler: name mangling

The Compiler

Vorführender
Präsentationsnotizen
Wikipedia overview w/ some good links: http://en.wikipedia.org/wiki/Name_mangling

Page 102009/06/17 |

Daniel Maleike
MBI

• Translates one (complete) piece of source code into one
piece of binary code

• Binary code may depend on external code (symbols)
• variables/functions declared but not defined need to be

defined somewhere else before execution
• jumps/function calls to unknown addresses
• from an early C++ compiler: name mangling

The Compiler
Tools:
Linux: nm, c++filt
Windows: undname

Vorführender
Präsentationsnotizen
Wikipedia overview w/ some good links: http://en.wikipedia.org/wiki/Name_mangling

Page 112009/06/17 |

Daniel Maleike
MBI

• Combines binary modules into executable or library
• relocates code (local addresses)
• resolves symbol dependencies (sooner or later)

• Time of final relocation/symbol resolution
• static linking: compile time (big files, fast execution)
• dynamic linking: run-time (small files, reuse, sharing)

The Linker

Page 122009/06/17 |

Daniel Maleike
MBI

• Combines binary modules into executable or library
• relocates code (local addresses)
• resolves symbol dependencies (sooner or later)

• Time of final relocation/symbol resolution
• static linking: compile time (big files, fast execution)
• dynamic linking: run-time (small files, reuse, sharing)

The Linker

Page 132009/06/17 |

Daniel Maleike
MBI

• Combines binary modules into executable or library
• relocates code (local addresses)
• resolves symbol dependencies (sooner or later)

• Time of final relocation/symbol resolution
• static linking: compile time (big files, fast execution)
• dynamic linking: run-time (small files, reuse, sharing)

The Linker

Page 142009/06/17 |

Daniel Maleike
MBI

make, Visual Studio, cmake

make/Visual Studio
• Call generators, preprocessor, compiler, and linker
• Provide all the right include paths and library search paths
• Define some special defines for some source code
• All the calls in the right order

cmake
• Generate project information for make/Visual Studio
• A platform independent “make”

Page 152009/06/17 |

Daniel Maleike
MBI

Basics, but highly important

• start with the first message and ignore the rest
• learn how to find the very first message
• know your development environment

• (with MS VisualStudio, get to know MSDN)

• read and understand the full line
• DO NOT dive into code until you have read the last

character of the message
• This is especially important with template errors

http://mbits/cdash/index.php?project=MITK

How to read error messages

http://mbits/cdash/index.php?project=MITK

Page 162009/06/17 |

Daniel Maleike
MBI

Possible error sources

• Compiler (C++ level problems)
• undeclared variables
• unknown types (#include missing)
• type mismatches

• Linker
• missing libraries
• missing symbols (details follow)

• methods declared in header but not implemented
• implemented but not in project (Cmake)

• Preprocessor

• Tool chain (CMake, Makefile, etc.)

How to read error messages

Page 172009/06/17 |

Daniel Maleike
MBI

Books

Kelley, A Book on C

Stroustrup, The C++ Programming Language

Meyers, Effective C++
Meyers, More Effective C++

Gamma, Design Patterns

Page 182009/06/17 |

Daniel Maleike
MBI

World Wide Web

Bjarne Stroustrup’s C++ Style and Technique FAQ
http://www.research.att.com/~bs/bs_faq2.html

C++ FAQ LITE
http://www.parashift.com/c++-faq-lite/

C/C++ Reference
http://www.cppreference.com/

Google
http://www.google.com

http://www.research.att.com/~bs/bs_faq2.html
http://www.parashift.com/c++-faq-lite/
http://www.cppreference.com/
http://www.google.com/

	How source code becomes executable (the “Play” button)
	How source code becomes executable
	How source code becomes executable
	The Preprocessor
	The Preprocessor
	Qt: moc, uic
	The Compiler
	The Compiler
	The Compiler
	The Compiler
	The Linker
	The Linker
	The Linker
	make, Visual Studio, cmake
	How to read error messages
	How to read error messages
	Books
	World Wide Web

