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How source code becomes 
executable (the “Play” button)

Daniel Maleike

Bjarne Stroustrup

Vorführender
Präsentationsnotizen
The presentation is by Daniel Maleike as a short introduction  of the Wednesday bugs quashing party.The image shows Bjarne Stroustrup, designer and original implementor of C++. The image is just to show whom to blame :-)
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How source code becomes executable

Vorführender
Präsentationsnotizen
Minimally object oriented hellow world, includingSeveral files, “headers” and “source code”InheritanceConditional compilation (#ifdef)Usage of the STL (std::cout)
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How source code becomes executable

Vorführender
Präsentationsnotizen
Linux Journal article “Linkers and Loaders”: http://www.linuxjournal.com/article/6463Wikipedia articles:Linker: http://en.wikipedia.org/wiki/LinkerName mangling: http://en.wikipedia.org/wiki/Name_mangling
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Simple text substitution before compile-time

• #include <filename>

• #define/#undef condition

• #ifdef/#ifndef condition, #else, #endif

• #define RADTODEG(x) ((x) * 57.29578)

• Stringification: #x expands to “<exp. of x>”

• Concatenation: x ## y concatenates 
the expansions of x and y

The Preprocessor

Vorführender
Präsentationsnotizen
Perfect summary of preprocessor in: Kelley, A Book on C
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Qt: moc, uic

moc
• produce meta-objects, needed for signals and slots in Qt

uic
• create code which can create the designed form at run-time

Useful links:

http://doc.trolltech.com/4.5/moc.html
http://doc.trolltech.com/4.5/designer-using-a-ui-file.html

Vorführender
Präsentationsnotizen
Two more tools running before actual compilation. moc and uic are only used when developing with the Qt toolkit.
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• Translates one (complete) piece of source code into one 
piece of binary code

• Binary code may depend on external code (symbols)
• variables/functions declared but not defined need to be 

defined somewhere else before execution
• jumps/function calls to unknown addresses
• from an early C++ compiler: name mangling

The Compiler

Vorführender
Präsentationsnotizen
Wikipedia overview w/ some good links: http://en.wikipedia.org/wiki/Name_mangling
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• Translates one (complete) piece of source code into one 
piece of binary code

• Binary code may depend on external code (symbols)
• variables/functions declared but not defined need to be 

defined somewhere else before execution
• jumps/function calls to unknown addresses
• from an early C++ compiler: name mangling

The Compiler
Tools:
Linux: nm, c++filt
Windows: undname

Vorführender
Präsentationsnotizen
Wikipedia overview w/ some good links: http://en.wikipedia.org/wiki/Name_mangling
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• Combines binary modules into executable or library
• relocates code (local addresses)
• resolves symbol dependencies (sooner or later)

• Time of final relocation/symbol resolution
• static linking: compile time (big files, fast execution)
• dynamic linking: run-time (small files, reuse, sharing)

The Linker
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make, Visual Studio, cmake

make/Visual Studio
• Call generators, preprocessor, compiler, and linker
• Provide all the right include paths and library search paths
• Define some special defines for some source code
• All the calls in the right order

cmake
• Generate project information for make/Visual Studio
• A platform independent “make”
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Basics, but highly important

• start with the first message and ignore the rest
• learn how to find the very first message
• know your development environment

• (with MS VisualStudio, get to know MSDN)

• read and understand the full line
• DO NOT dive into code until you have read the last 

character of the message
• This is especially important with template errors

http://mbits/cdash/index.php?project=MITK

How to read error messages

http://mbits/cdash/index.php?project=MITK
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Possible error sources

• Compiler (C++ level problems)
• undeclared variables
• unknown types (#include missing)
• type mismatches

• Linker 
• missing libraries
• missing symbols (details follow)

• methods declared in header but not implemented
• implemented but not in project (Cmake)

• Preprocessor

• Tool chain (CMake, Makefile, etc.)

How to read error messages
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Books

Kelley, A Book on C

Stroustrup, The C++ Programming Language

Meyers, Effective C++
Meyers, More Effective C++

Gamma, Design Patterns
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World Wide Web

Bjarne Stroustrup’s C++ Style and Technique FAQ
http://www.research.att.com/~bs/bs_faq2.html

C++ FAQ LITE
http://www.parashift.com/c++-faq-lite/

C/C++ Reference
http://www.cppreference.com/

Google
http://www.google.com

http://www.research.att.com/~bs/bs_faq2.html
http://www.parashift.com/c++-faq-lite/
http://www.cppreference.com/
http://www.google.com/
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